Ventilatory responses to chemosensory stimuli in quadriplegic subjects.

نویسندگان

  • M Pokorski
  • T Morikawa
  • S Takaishi
  • A Masuda
  • B Ahn
  • Y Honda
چکیده

We tested the hypothesis that interruption of motor traffic running down the spinal cord to respiratory muscle motoneurons suppresses the ventilatory response to increased chemical drive. We compared the hypoxic (HVR) and hypercapnic (HCVR) ventilatory responses, based on the rebreathing technique, before and during inspiratory flow-resistive loading in 17 quadriplegic patients with low cervical spinal cord transection and in 17 normal subjects. The ventilatory response was evaluated from minute ventilation (VE) and mouth occlusion pressure (P0.2) slopes on arterial oxygen saturation (SaO2) or on end-tidal PCO2 (PACO2), and from absolute VE values at SaO2 80% or at PACO2 55 mmHg. We found no difference in the unloaded HVR or HCVR between the quadriplegic and normal subjects. In the loaded HVR, the delta VE/delta SaO2 slope tended to decrease similarly in both groups of subjects. The delta P0.2/delta SaO2 slope was shifted upwards in normal subjects, yielding a significantly higher P0.2 at a given SaO2. In contrast, this rise in the P0.2 level during loaded HVR was absent in quadriplegics. Loaded HCVR yielded qualitatively similar results in both groups of subjects; delta VE/delta PACO2 decreased and delta P0.2/delta PACO2 increased significantly. The results show that the ventilatory chemosensory responses were unsuppressed in quadriplegics, although they displayed a disturbance in load-compensation, as reflected by occlusion pressure, in hypoxia. We conclude that the descending drive to respiratory muscle motoneurons is not germane to the operation of the chemosensory reflexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cardiovascular and ventilatory acclimatization induced by chronic intermittent hypoxia: a role for the carotid body in the pathophysiology of sleep apnea.

Patients with obstructive sleep apnea (OSA) show augmented ventilatory, sympathetic and cardiovascular responses to hypoxia. The facilitatory effect of chronic intermittent hypoxia (CIH) on the hypoxic ventilatory response has been attributed to a potentiation of the carotid body (CB) chemosensory response to hypoxia. However, it is a matter of debate whether the effects induced by CIH on venti...

متن کامل

Carotid body inflammation and cardiorespiratory alterations in intermittent hypoxia.

Chronic intermittent hypoxia (CIH), a main feature of obstructive sleep apnoea (OSA), increases hypoxic ventilatory responses and elicits hypertension, partially attributed to an enhance carotid body (CB) responsiveness to hypoxia. As inflammation has been involved in CIH-induced hypertension and chemosensory potentiation, we tested whether ibuprofen may block CB chemosensory and cardiorespirat...

متن کامل

Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link.

Intermittent hypoxia, a feature of obstructive sleep apnoea, potentiates ventilatory hypoxic responses, alters heart rate variability and produces hypertension, partially owing to an enhanced carotid body responsiveness to hypoxia. Since oxidative stress is a potential mediator of both chemosensory and cardiorespiratory alterations, we hypothesised that an antioxidant treatment may prevent thes...

متن کامل

Revised Version Ms ERJ-01581-2009 Carotid body and cardiorespiratory alterations in intermittent hypoxia: the oxidative link

Intermittent hypoxia, a feature of obstructive sleep apnea, potentiates ventilatory hypoxic responses, alters heart rate variability and produces hypertension, partially attributed to an enhance carotid body responsiveness to hypoxia. Since oxidative stress is a potential mediator of both chemosensory and cardiorespiratory alterations, we hypothesized that an antioxidant treatment may prevent t...

متن کامل

Carotid body potentiation during chronic intermittent hypoxia: implication for hypertension

Autonomic dysfunction is involved in the development of hypertension in humans with obstructive sleep apnea, and animals exposed to chronic intermittent hypoxia (CIH). It has been proposed that a crucial step in the development of the hypertension is the potentiation of the carotid body (CB) chemosensory responses to hypoxia, but the temporal progression of the CB chemosensory, autonomic and hy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The European respiratory journal

دوره 3 8  شماره 

صفحات  -

تاریخ انتشار 1990